Added version 1
Signed-off-by: Marcin Woźniak <y0rune@aol.com>
This commit is contained in:
commit
63e97d3f52
BIN
1/WarunkiZaliczeniaCwiczen.pdf
Normal file
BIN
1/WarunkiZaliczeniaCwiczen.pdf
Normal file
Binary file not shown.
BIN
1/cw1_algkrypto1.pdf
Normal file
BIN
1/cw1_algkrypto1.pdf
Normal file
Binary file not shown.
BIN
1/kryptoalg1.pdf
Normal file
BIN
1/kryptoalg1.pdf
Normal file
Binary file not shown.
BIN
2-lab/lab1.pdf
Normal file
BIN
2-lab/lab1.pdf
Normal file
Binary file not shown.
BIN
2-lab/lab1_kryptoalgo.pdf
Normal file
BIN
2-lab/lab1_kryptoalgo.pdf
Normal file
Binary file not shown.
122
2-lab/modul1.rb
Executable file
122
2-lab/modul1.rb
Executable file
@ -0,0 +1,122 @@
|
||||
#!/usr/bin/ruby
|
||||
|
||||
#####################################
|
||||
#
|
||||
# Marcin Woźniak
|
||||
# s434812
|
||||
#
|
||||
# Last edit: 27-10-2020
|
||||
#
|
||||
#####################################
|
||||
|
||||
#!/usr/bin/ruby
|
||||
|
||||
require 'prime'
|
||||
require 'openssl'
|
||||
require 'securerandom'
|
||||
require 'prime'
|
||||
|
||||
def extended_euklides(a, b)
|
||||
return 1, 0 if b == 0
|
||||
|
||||
q, r = a.divmod b
|
||||
s, t = extended_euklides(b, r)
|
||||
|
||||
return t, s - q * t
|
||||
end
|
||||
|
||||
## Zad. 1.1
|
||||
def random_gen_Zn(n,k)
|
||||
|
||||
#b = k.to_s(2).count "[0-1]"
|
||||
|
||||
#r = SecureRandom.random_number(n)
|
||||
#x = r.to_s(2).count "[0-1]"
|
||||
|
||||
#until x != b do
|
||||
# #if r < n then
|
||||
# r = SecureRandom.random_number(n)
|
||||
# x = r.to_s(2).count "[0-1]"
|
||||
# puts r
|
||||
# puts x
|
||||
# #end
|
||||
#end
|
||||
#return r
|
||||
|
||||
if 2**(k-1) < n && k > 0 then
|
||||
if k == 1 then
|
||||
min = 0
|
||||
max = 1
|
||||
else
|
||||
min = 2**(k-1)
|
||||
max = (2**k)-1
|
||||
end
|
||||
end
|
||||
r = rand(min..max)
|
||||
while true do
|
||||
ra = rand(min..max)
|
||||
if ra < n then
|
||||
break
|
||||
end
|
||||
end
|
||||
|
||||
return ra
|
||||
|
||||
end
|
||||
|
||||
## Zad. 1.2
|
||||
def reciprocal_Phi_n(n,b)
|
||||
u = extended_euklides(n,b)[0]
|
||||
v = extended_euklides(n,b)[1]
|
||||
|
||||
if v % n == 0 then
|
||||
return v
|
||||
else
|
||||
return u
|
||||
end
|
||||
end
|
||||
|
||||
## Zad. 1.3
|
||||
|
||||
def betterExponentiation(x,k,n)
|
||||
b = x.to_s(2)
|
||||
l = b.count "[0-1]"
|
||||
y = 1
|
||||
i = l - 1
|
||||
|
||||
for j in 1..i
|
||||
y = y**2 % n
|
||||
if b[-1*(j)]
|
||||
y = y * x % n
|
||||
end
|
||||
end
|
||||
return y
|
||||
end
|
||||
|
||||
## Zad. 1.4
|
||||
def remSqEuler(a,p)
|
||||
ans = betterExponentiation(a,(p-1)/2,p)
|
||||
|
||||
if ans > 0 && Prime.prime?(p) then
|
||||
return true
|
||||
else
|
||||
return false
|
||||
end
|
||||
end
|
||||
|
||||
## Zad. 1.5
|
||||
def squareRootFp(a)
|
||||
p = 3 % 4
|
||||
if remSqEuler(a,p) then
|
||||
bp = betterExponentiation(a,(p+1)/4,4) % 4
|
||||
bm = -1 * bp
|
||||
return bp,bm
|
||||
end
|
||||
end
|
||||
|
||||
#puts extended_euklides(10,13)
|
||||
puts random_gen_Zn(50,3)
|
||||
#puts reciprocal_Phi_n(10,13)
|
||||
#puts betterExponentiation(112218876,2,10)
|
||||
#puts remSqEuler(3,13)
|
||||
#puts squareRootFp(13)
|
Loading…
Reference in New Issue
Block a user