#!/usr/bin/ruby # coding: utf-8 ##################################### # # Marcin Woźniak # s434812 # ##################################### require 'openssl' require 'securerandom' require 'prime' require 'thread' def nwd(a, b) if a == 0 return false end b == 0 ? a : nwd(b, a.modulo(b)) end def extended_euklides(a, b) return 1, 0 if b == 0 q, r = a.divmod b s, t = extended_euklides(b, r) return t, s - q * t end # Zad. 1.1 def random_gen_Zn(k,n) if n == 0 n = 2 ** k end if k == 1 max = 1 else kb = k.to_s(2) minimum = [] minimum << 1 k = kb.length - 1 while (k != 0) do j = SecureRandom.random_number(2) minimum << j k = k - 1 end min = minimum.join.to_i(2) max = n - 1 if min < max return SecureRandom.random_number(min..max) end end end # Zad. 1.2 def reciprocal_Phi_p(n,p) u = extended_euklides(n,p)[0] v = extended_euklides(n,p)[1] if u * n % p == 1 return u else return v end end # Zad. 1.3 def betterExponentiation(x,k,n) if n == 0 return false end if x < n && x > 0 b = k.to_s(2).reverse l = b.count "[0-1]" y = 1 i = l - 1 while i >= 0 y = y**2 % n if b[i]=="1" y = y * x % n end i = i - 1 end return y end end # Zad. 1.4 def remSqEuler(a,p) ans = betterExponentiation(a,(p-1)/2,p) if ans == 1 && Prime.prime?(p) return true else return false end end # Zad. 1.5 def squareRootFp(p,b) if p % 4 == 3 && remSqEuler(p,b) == true a = betterExponentiation(b, (p+1)/4, p) return a end end # Zad. 1.6 def primalityTest(n) if n == 1 return false end if n == 2 || n == 3 return true end counter = 10 while (counter != 0) do b = SecureRandom.random_number(2..n-2) # Tez dziala n-1 if betterExponentiation(b,n-1,n) != 1 return false end counter = counter - 1 end return true end def specyficPrimaryNumber p = 0 q = 0 qThread = Thread.new { while true q = SecureRandom.random_number(2 ** 256) if primalityTest(q) break end end } qThread.join while true do q = SecureRandom.random_number(2 ** 256) p = 2 * q + 1 if primalityTest(p) return p,q end end end def generator(p,q) while true g = SecureRandom.random_number(2..p-2) if betterExponentiation(g,q,p) == 1 next else return g end end end def generate(n) return `openssl prime -generate -bits '#{n}'`.gsub(/\n$/, '').to_i end